82 research outputs found

    Renormalisation group corrections to neutrino mixing sum rules

    Get PDF
    Neutrino mixing sum rules are common to a large class of models based on the (discrete) symmetry approach to lepton flavour. In this approach the neutrino mixing matrix UU is assumed to have an underlying approximate symmetry form \tildeU_\nu, which is dictated by, or associated with, the employed (discrete) symmetry. In such a setup the cosine of the Dirac CP-violating phase δ\delta can be related to the three neutrino mixing angles in terms of a sum rule which depends on the symmetry form of \tildeU_\nu. We consider five extensively discussed possible symmetry forms of \tildeU_\nu: i) bimaximal (BM) and ii) tri-bimaximal (TBM) forms, the forms corresponding to iii) golden ratio type A (GRA) mixing, iv) golden ratio type B (GRB) mixing, and v) hexagonal (HG) mixing. For each of these forms we investigate the renormalisation group corrections to the sum rule predictions for δ\delta in the cases of neutrino Majorana mass term generated by the Weinberg (dimension 5) operator added to i) the Standard Model, and ii) the minimal SUSY extension of the Standard Model

    Exact Scale Invariance in Mixing of Binary Candidates in Voting Model

    Full text link
    We introduce a voting model and discuss the scale invariance in the mixing of candidates. The Candidates are classified into two categories μ{0,1}\mu\in \{0,1\} and are called as `binary' candidates. There are in total N=N0+N1N=N_{0}+N_{1} candidates, and voters vote for them one by one. The probability that a candidate gets a vote is proportional to the number of votes. The initial number of votes (`seed') of a candidate μ\mu is set to be sμs_{\mu}. After infinite counts of voting, the probability function of the share of votes of the candidate μ\mu obeys gamma distributions with the shape exponent sμs_{\mu} in the thermodynamic limit Z0=N1s1+N0s0Z_{0}=N_{1}s_{1}+N_{0}s_{0}\to \infty. Between the cumulative functions {xμ}\{x_{\mu}\} of binary candidates, the power-law relation 1x1(1x0)α1-x_{1} \sim (1-x_{0})^{\alpha} with the critical exponent α=s1/s0\alpha=s_{1}/s_{0} holds in the region 1x0,1x1<<11-x_{0},1-x_{1}<<1. In the double scaling limit (s1,s0)(0,0)(s_{1},s_{0})\to (0,0) and Z0Z_{0} \to \infty with s1/s0=αs_{1}/s_{0}=\alpha fixed, the relation 1x1=(1x0)α1-x_{1}=(1-x_{0})^{\alpha} holds exactly over the entire range 0x0,x110\le x_{0},x_{1} \le 1. We study the data on horse races obtained from the Japan Racing Association for the period 1986 to 2006 and confirm scale invariance.Comment: 19 pages, 8 figures, 2 table

    Statistical mechanics of voting

    Full text link
    Decision procedures aggregating the preferences of multiple agents can produce cycles and hence outcomes which have been described heuristically as `chaotic'. We make this description precise by constructing an explicit dynamical system from the agents' preferences and a voting rule. The dynamics form a one dimensional statistical mechanics model; this suggests the use of the topological entropy to quantify the complexity of the system. We formulate natural political/social questions about the expected complexity of a voting rule and degree of cohesion/diversity among agents in terms of random matrix models---ensembles of statistical mechanics models---and compute quantitative answers in some representative cases.Comment: 9 pages, plain TeX, 2 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages

    Predictions for the Leptonic Dirac CP Violation Phase: a Systematic Phenomenological Analysis

    Get PDF
    We derive predictions for the Dirac phase δ\delta present in the 3×33\times 3 unitary neutrino mixing matrix U=UeUνU = U_e^{\dagger} \, U_{\nu}, where UeU_e and UνU_{\nu} are 3×33\times 3 unitary matrices which arise from the diagonalisation respectively of the charged lepton and the neutrino mass matrices. We consider forms of UeU_e and UνU_{\nu} allowing us to express δ\delta as a function of three neutrino mixing angles, present in UU, and the angles contained in UνU_{\nu}. We consider several forms of UνU_{\nu} determined by, or associated with, symmetries, tri-bimaximal, bimaximal, etc., for which the angles in UνU_{\nu} are fixed. For each of these forms and forms of UeU_e allowing to reproduce the measured values of the neutrino mixing angles, we construct the likelihood function for cosδ\cos \delta, using i) the latest results of the global fit analysis of neutrino oscillation data, and ii) the prospective sensitivities on the neutrino mixing angles. Our results, in particular, confirm the conclusion reached in earlier similar studies that the measurement of the Dirac phase in the neutrino mixing matrix, together with an improvement of the precision on the mixing angles, can provide unique information about the possible existence of symmetry in the lepton sector

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    Get PDF
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) is a process inwhich neutrinos scatter on a nucleus which acts as a single particle. Thoughthe total cross section is large by neutrino standards, CEν\nuNS has longproven difficult to detect, since the deposited energy into the nucleus is\sim keV. In 2017, the COHERENT collaboration announced the detection ofCEν\nuNS using a stopped-pion source with CsI detectors, followed up thedetection of CEν\nuNS using an Ar target. The detection of CEν\nuNS hasspawned a flurry of activities in high-energy physics, inspiring newconstraints on beyond the Standard Model (BSM) physics, and new experimentalmethods. The CEν\nuNS process has important implications for not onlyhigh-energy physics, but also astrophysics, nuclear physics, and beyond. Thiswhitepaper discusses the scientific importance of CEν\nuNS, highlighting howpresent experiments such as COHERENT are informing theory, and also how futureexperiments will provide a wealth of information across the aforementionedfields of physics.<br

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    Get PDF
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEν\nuNS has long proven difficult to detect, since the deposited energy into the nucleus is \sim keV. In 2017, the COHERENT collaboration announced the detection of CEν\nuNS using a stopped-pion source with CsI detectors, followed up the detection of CEν\nuNS using an Ar target. The detection of CEν\nuNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEν\nuNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEν\nuNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure
    corecore